AppendixB.Symmap file

#
# table of ralf w. grosse-kunstleve, eth, zuerich.
#
# version june 1995
#      updated  september 29 1995
#      updated  july       9 1997
# last updated  july      24 1998
data_notation

loop_ 
_monoclinic_extension   # cf. _symmetry_space_group_id
_monoclinic_axis        # cf. it vol. a 1983 sec. 2.16.
_monoclinic_setting     # cf. it vol. a 1983 tab. 2.16.1.
_monoclinic_cellchoice  # cf. it vol. a 1983 sec. 2.16.(i) &
fig. 2.6.4.

b b abc 1
b1 b abc 1
b2 b abc 2
b3 b abc 3
-b b c-ba 1
-b1 b c-ba 1
-b2 b c-ba 2
-b3 b c-ba 3
c c abc 1
c1 c abc 1
c2 c abc 2
c3 c abc 3
-c c ba-c 1
-c1 c ba-c 1
-c2 c ba-c 2
-c3 c ba-c 3
a a abc 1
a1 a abc 1
a2 a abc 2
a3 a abc 3
-a a -acb 1
-a1 a -acb 1
-a2 a -acb 2
-a3 a -acb 3

loop_
_symmetry_space_group_id
_symmetry_space_group_name_sch
_symmetry_space_group_name_h-m   # recognised iucr cif data names
_symmetry_space_group_name_hall  # recognised iucr cif data names

1 c1^1 p_1 p_1 #deprecated Hall symbols
2 ci^1 p_-1 -p_1
3:b c2^1 p_1_2_1 p_2y
3:b c2^1 p_2 p_2y
3:c c2^1 p_1_1_2 p_2
3:a c2^1 p_2_1_1 p_2x
4:b c2^2 p_1_21_1 p_2yb
4:b c2^2 p_1_21_1 p_2y1
4:b c2^2 p_21 p_2yb
4:c c2^2 p_1_1_21 p_2c
4:c c2^2 p_1_1_21 p_21
4:a c2^2 p_21_1_1 p_2xa
4:a c2^2 p_21_1_1 p_2x1
5:b1 c2^3 c_1_2_1 c_2y
5:b1 c2^3 c_2 c_2y
5:b2 c2^3 a_1_2_1 a_2y
5:b3 c2^3 i_1_2_1 i_2y
5:c1 c2^3 a_1_1_2 a_2
5:c2 c2^3 b_1_1_2 b_2
5:c3 c2^3 i_1_1_2 i_2
5:a1 c2^3 b_2_1_1 b_2x
5:a2 c2^3 c_2_1_1 c_2x
5:a3 c2^3 i_2_1_1 i_2x
6:b cs^1 p_1_m_1 p_-2y
6:b cs^1 p_m p_-2y
6:c cs^1 p_1_1_m p_-2
6:a cs^1 p_m_1_1 p_-2x
7:b1 cs^2 p_1_c_1 p_-2yc
7:b1 cs^2 p_c p_-2yc
7:b2 cs^2 p_1_n_1 p_-2yac
7:b2 cs^2 p_n p_-2yac
7:b3 cs^2 p_1_a_1 p_-2ya
7:b3 cs^2 p_a p_-2ya
7:c1 cs^2 p_1_1_a p_-2a
7:c2 cs^2 p_1_1_n p_-2ab
7:c3 cs^2 p_1_1_b p_-2b
7:a1 cs^2 p_b_1_1 p_-2xb
7:a2 cs^2 p_n_1_1 p_-2xbc
7:a3 cs^2 p_c_1_1 p_-2xc
8:b1 cs^3 c_1_m_1 c_-2y
8:b1 cs^3 c_m c_-2y
8:b2 cs^3 a_1_m_1 a_-2y
8:b3 cs^3 i_1_m_1 i_-2y
8:b3 cs^3 i_m i_-2y
8:c1 cs^3 a_1_1_m a_-2
8:c2 cs^3 b_1_1_m b_-2
8:c3 cs^3 i_1_1_m i_-2
8:a1 cs^3 b_m_1_1 b_-2x
8:a2 cs^3 c_m_1_1 c_-2x
8:a3 cs^3 i_m_1_1 i_-2x
9:b1 cs^4 c_1_c_1 c_-2yc
9:b1 cs^4 c_c c_-2yc
9:b2 cs^4 a_1_n_1 a_-2yab # a_-2yac
9:b3 cs^4 i_1_a_1 i_-2ya
9:-b1 cs^4 a_1_a_1 a_-2ya
9:-b2 cs^4 c_1_n_1 c_-2yac # c_-2ybc
9:-b3 cs^4 i_1_c_1 i_-2yc
9:c1 cs^4 a_1_1_a a_-2a
9:c2 cs^4 b_1_1_n b_-2ab # b_-2bc
9:c3 cs^4 i_1_1_b i_-2b
9:-c1 cs^4 b_1_1_b b_-2b
9:-c2 cs^4 a_1_1_n a_-2ab # a_-2ac
9:-c3 cs^4 i_1_1_a i_-2a
9:a1 cs^4 b_b_1_1 b_-2xb
9:a2 cs^4 c_n_1_1 c_-2xac # c_-2xbc
9:a3 cs^4 i_c_1_1 i_-2xc
9:-a1 cs^4 c_c_1_1 c_-2xc
9:-a2 cs^4 b_n_1_1 b_-2xab # b_-2xbc
9:-a3 cs^4 i_b_1_1 i_-2xb
10:b c2h^1 p_1_2/m_1 -p_2y
10:b c2h^1 p_2/m -p_2y
10:c c2h^1 p_1_1_2/m -p_2
10:a c2h^1 p_2/m_1_1 -p_2x
11:b c2h^2 p_1_21/m_1 -p_2yb
11:b c2h^2 p_1_21/m_1 -p_2y1
11:b c2h^2 p_21/m -p_2yb
11:c c2h^2 p_1_1_21/m -p_2c
11:c c2h^2 p_1_1_21/m -p_21
11:a c2h^2 p_21/m_1_1 -p_2xa
11:a c2h^2 p_21/m_1_1 -p_2x1
12:b1 c2h^3 c_1_2/m_1 -c_2y
12:b1 c2h^3 c_2/m -c_2y
12:b2 c2h^3 a_1_2/m_1 -a_2y
12:b3 c2h^3 i_1_2/m_1 -i_2y
12:b3 c2h^3 i_2/m -i_2y
12:c1 c2h^3 a_1_1_2/m -a_2
12:c2 c2h^3 b_1_1_2/m -b_2
12:c3 c2h^3 i_1_1_2/m -i_2
12:a1 c2h^3 b_2/m_1_1 -b_2x
12:a2 c2h^3 c_2/m_1_1 -c_2x
12:a3 c2h^3 i_2/m_1_1 -i_2x
13:b1 c2h^4 p_1_2/c_1 -p_2yc
13:b1 c2h^4 p_2/c -p_2yc
13:b2 c2h^4 p_1_2/n_1 -p_2yac
13:b2 c2h^4 p_2/n -p_2yac
13:b3 c2h^4 p_1_2/a_1 -p_2ya
13:b3 c2h^4 p_2/a -p_2ya
13:c1 c2h^4 p_1_1_2/a -p_2a
13:c2 c2h^4 p_1_1_2/n -p_2ab
13:c3 c2h^4 p_1_1_2/b -p_2b
13:a1 c2h^4 p_2/b_1_1 -p_2xb
13:a2 c2h^4 p_2/n_1_1 -p_2xbc
13:a3 c2h^4 p_2/c_1_1 -p_2xc
14:b1 c2h^5 p_1_21/c_1 -p_2ybc
14:b1 c2h^5 p_21/c -p_2ybc
14:b2 c2h^5 p_1_21/n_1 -p_2yn
14:b2 c2h^5 p_21/n -p_2yn
14:b3 c2h^5 p_1_21/a_1 -p_2yab
14:b3 c2h^5 p_21/a -p_2yab
14:c1 c2h^5 p_1_1_21/a -p_2ac
14:c2 c2h^5 p_1_1_21/n -p_2n
14:c3 c2h^5 p_1_1_21/b -p_2bc
14:a1 c2h^5 p_21/b_1_1 -p_2xab
14:a2 c2h^5 p_21/n_1_1 -p_2xn
14:a3 c2h^5 p_21/c_1_1 -p_2xac
15:b1 c2h^6 c_1_2/c_1 -c_2yc
15:b1 c2h^6 c_2/c -c_2yc
15:b2 c2h^6 a_1_2/n_1 -a_2yab # -a_2yac
15:b3 c2h^6 i_1_2/a_1 -i_2ya
15:b3 c2h^6 i_2/a -i_2ya
15:-b1 c2h^6 a_1_2/a_1 -a_2ya
15:-b2 c2h^6 c_1_2/n_1 -c_2yac # -c_2ybc
15:-b2 c2h^6 c_2/n -c_2yac # -c_2ybc
15:-b3 c2h^6 i_1_2/c_1 -i_2yc
15:-b3 c2h^6 i_2/c -i_2yc
15:c1 c2h^6 a_1_1_2/a -a_2a
15:c2 c2h^6 b_1_1_2/n -b_2ab # -b_2bc
15:c3 c2h^6 i_1_1_2/b -i_2b
15:-c1 c2h^6 b_1_1_2/b -b_2b
15:-c2 c2h^6 a_1_1_2/n -a_2ab # -a_2ac
15:-c3 c2h^6 i_1_1_2/a -i_2a
15:a1 c2h^6 b_2/b_1_1 -b_2xb
15:a2 c2h^6 c_2/n_1_1 -c_2xac # -c_2xbc
15:a3 c2h^6 i_2/c_1_1 -i_2xc
15:-a1 c2h^6 c_2/c_1_1 -c_2xc
15:-a2 c2h^6 b_2/n_1_1 -b_2xab # -b_2xbc
15:-a3 c2h^6 i_2/b_1_1 -i_2xb
16 d2^1 p_2_2_2 p_2_2
17 d2^2 p_2_2_21 p_2c_2
17 d2^2 p_2_2_21 p_21_2
17:cab d2^2 p_21_2_2 p_2a_2a
17:bca d2^2 p_2_21_2 p_2_2b
18 d2^3 p_21_21_2 p_2_2ab
18:cab d2^3 p_2_21_21 p_2bc_2
18:bca d2^3 p_21_2_21 p_2ac_2ac
19 d2^4 p_21_21_21 p_2ac_2ab
20 d2^5 c_2_2_21 c_2c_2
20 d2^5 c_2_2_21 c_21_2
20:cab d2^5 a_21_2_2 a_2a_2a
20:cab d2^5 a_21_2_2 a_2a_21
20:bca d2^5 b_2_21_2 b_2_2b
21 d2^6 c_2_2_2 c_2_2
21:cab d2^6 a_2_2_2 a_2_2
21:bca d2^6 b_2_2_2 b_2_2
22 d2^7 f_2_2_2 f_2_2
23 d2^8 i_2_2_2 i_2_2
24 d2^9 i_21_21_21 i_2b_2c
25 c2v^1 p_m_m_2 p_2_-2
25:cab c2v^1 p_2_m_m p_-2_2
25:bca c2v^1 p_m_2_m p_-2_-2
26 c2v^2 p_m_c_21 p_2c_-2
26 c2v^2 p_m_c_21 p_21_-2
26:ba-c c2v^2 p_c_m_21 p_2c_-2c
26:ba-c c2v^2 p_c_m_21 p_21_-2c
26:cab c2v^2 p_21_m_a p_-2a_2a
26:-cba c2v^2 p_21_a_m p_-2_2a
26:bca c2v^2 p_b_21_m p_-2_-2b
26:a-cb c2v^2 p_m_21_b p_-2b_-2
27 c2v^3 p_c_c_2 p_2_-2c
27:cab c2v^3 p_2_a_a p_-2a_2
27:bca c2v^3 p_b_2_b p_-2b_-2b
28 c2v^4 p_m_a_2 p_2_-2a
28 c2v^4 p_m_a_2 p_2_-21
28:ba-c c2v^4 p_b_m_2 p_2_-2b
28:cab c2v^4 p_2_m_b p_-2b_2
28:-cba c2v^4 p_2_c_m p_-2c_2
28:-cba c2v^4 p_2_c_m p_-21_2
28:bca c2v^4 p_c_2_m p_-2c_-2c
28:a-cb c2v^4 p_m_2_a p_-2a_-2a
29 c2v^5 p_c_a_21 p_2c_-2ac
29:ba-c c2v^5 p_b_c_21 p_2c_-2b
29:cab c2v^5 p_21_a_b p_-2b_2a
29:-cba c2v^5 p_21_c_a p_-2ac_2a
29:bca c2v^5 p_c_21_b p_-2bc_-2c
29:a-cb c2v^5 p_b_21_a p_-2a_-2ab
30 c2v^6 p_n_c_2 p_2_-2bc
30:ba-c c2v^6 p_c_n_2 p_2_-2ac
30:cab c2v^6 p_2_n_a p_-2ac_2
30:-cba c2v^6 p_2_a_n p_-2ab_2
30:bca c2v^6 p_b_2_n p_-2ab_-2ab
30:a-cb c2v^6 p_n_2_b p_-2bc_-2bc
31 c2v^7 p_m_n_21 p_2ac_-2
31:ba-c c2v^7 p_n_m_21 p_2bc_-2bc
31:cab c2v^7 p_21_m_n p_-2ab_2ab
31:-cba c2v^7 p_21_n_m p_-2_2ac
31:bca c2v^7 p_n_21_m p_-2_-2bc
31:a-cb c2v^7 p_m_21_n p_-2ab_-2
32 c2v^8 p_b_a_2 p_2_-2ab
32:cab c2v^8 p_2_c_b p_-2bc_2
32:bca c2v^8 p_c_2_a p_-2ac_-2ac
33 c2v^9 p_n_a_21 p_2c_-2n
33 c2v^9 p_n_a_21 p_21_-2n
33:ba-c c2v^9 p_b_n_21 p_2c_-2ab
33:ba-c c2v^9 p_b_n_21 p_21_-2ab
33:cab c2v^9 p_21_n_b p_-2bc_2a
33:cab c2v^9 p_21_n_b p_-2bc_21
33:-cba c2v^9 p_21_c_n p_-2n_2a
33:-cba c2v^9 p_21_c_n p_-2n_21
33:bca c2v^9 p_c_21_n p_-2n_-2ac
33:a-cb c2v^9 p_n_21_a p_-2ac_-2n
34 c2v^10 p_n_n_2 p_2_-2n
34:cab c2v^10 p_2_n_n p_-2n_2
34:bca c2v^10 p_n_2_n p_-2n_-2n
35 c2v^11 c_m_m_2 c_2_-2
35:cab c2v^11 a_2_m_m a_-2_2
35:bca c2v^11 b_m_2_m b_-2_-2
36 c2v^12 c_m_c_21 c_2c_-2
36 c2v^12 c_m_c_21 c_21_-2
36:ba-c c2v^12 c_c_m_21 c_2c_-2c
36:ba-c c2v^12 c_c_m_21 c_21_-2c
36:cab c2v^12 a_21_m_a a_-2a_2a
36:cab c2v^12 a_21_m_a a_-2a_21
36:-cba c2v^12 a_21_a_m a_-2_2a
36:-cba c2v^12 a_21_a_m a_-2_21
36:bca c2v^12 b_b_21_m b_-2_-2b
36:a-cb c2v^12 b_m_21_b b_-2b_-2
37 c2v^13 c_c_c_2 c_2_-2c
37:cab c2v^13 a_2_a_a a_-2a_2
37:bca c2v^13 b_b_2_b b_-2b_-2b
38 c2v^14 a_m_m_2 a_2_-2
38:ba-c c2v^14 b_m_m_2 b_2_-2
38:cab c2v^14 b_2_m_m b_-2_2
38:-cba c2v^14 c_2_m_m c_-2_2
38:bca c2v^14 c_m_2_m c_-2_-2
38:a-cb c2v^14 a_m_2_m a_-2_-2
39 c2v^15 a_b_m_2 a_2_-2c
39:ba-c c2v^15 b_m_a_2 b_2_-2a # b_2_-2c
39:cab c2v^15 b_2_c_m b_-2a_2 # b_-2c_2
39:-cba c2v^15 c_2_m_b c_-2a_2 # c_-2b_2
39:bca c2v^15 c_m_2_a c_-2a_-2a # c_-2b_-2b
39:a-cb c2v^15 a_c_2_m a_-2c_-2c
40 c2v^16 a_m_a_2 a_2_-2a
40:ba-c c2v^16 b_b_m_2 b_2_-2b
40:cab c2v^16 b_2_m_b b_-2b_2
40:-cba c2v^16 c_2_c_m c_-2c_2
40:bca c2v^16 c_c_2_m c_-2c_-2c
40:a-cb c2v^16 a_m_2_a a_-2a_-2a
41 c2v^17 a_b_a_2 a_2_-2ab # a_2_-2ac
41:ba-c c2v^17 b_b_a_2 b_2_-2ab # b_2_-2bc
41:cab c2v^17 b_2_c_b b_-2ab_2 # b_-2bc_2
41:-cba c2v^17 c_2_c_b c_-2ac_2 # c_-2bc_2
41:bca c2v^17 c_c_2_a c_-2ac_-2ac # c_-2bc_-2bc
41:a-cb c2v^17 a_c_2_a a_-2ab_-2ab # a_-2ac_-2ac
42 c2v^18 f_m_m_2 f_2_-2
42:cab c2v^18 f_2_m_m f_-2_2
42:bca c2v^18 f_m_2_m f_-2_-2
43 c2v^19 f_d_d_2 f_2_-2d
43:cab c2v^19 f_2_d_d f_-2d_2
43:bca c2v^19 f_d_2_d f_-2d_-2d
44 c2v^20 i_m_m_2 i_2_-2
44:cab c2v^20 i_2_m_m i_-2_2
44:bca c2v^20 i_m_2_m i_-2_-2
45 c2v^21 i_b_a_2 i_2_-2c
45:cab c2v^21 i_2_c_b i_-2a_2
45:bca c2v^21 i_c_2_a i_-2b_-2b
46 c2v^22 i_m_a_2 i_2_-2a
46:ba-c c2v^22 i_b_m_2 i_2_-2b
46:cab c2v^22 i_2_m_b i_-2b_2
46:-cba c2v^22 i_2_c_m i_-2c_2
46:bca c2v^22 i_c_2_m i_-2c_-2c
46:a-cb c2v^22 i_m_2_a i_-2a_-2a
47 d2h^1 p_m_m_m -p_2_2
48:1 d2h^2 p_n_n_n:1 p_2_2_-1n
48:2 d2h^2 p_n_n_n:2 -p_2ab_2bc
49 d2h^3 p_c_c_m -p_2_2c
49:cab d2h^3 p_m_a_a -p_2a_2
49:bca d2h^3 p_b_m_b -p_2b_2b
50:1 d2h^4 p_b_a_n:1 p_2_2_-1ab
50:2 d2h^4 p_b_a_n:2 -p_2ab_2b
50:1cab d2h^4 p_n_c_b:1 p_2_2_-1bc
50:2cab d2h^4 p_n_c_b:2 -p_2b_2bc
50:1bca d2h^4 p_c_n_a:1 p_2_2_-1ac
50:2bca d2h^4 p_c_n_a:2 -p_2a_2c
51 d2h^5 p_m_m_a -p_2a_2a
51:ba-c d2h^5 p_m_m_b -p_2b_2
51:cab d2h^5 p_b_m_m -p_2_2b
51:-cba d2h^5 p_c_m_m -p_2c_2c
51:bca d2h^5 p_m_c_m -p_2c_2
51:a-cb d2h^5 p_m_a_m -p_2_2a
52 d2h^6 p_n_n_a -p_2a_2bc
52:ba-c d2h^6 p_n_n_b -p_2b_2n
52:cab d2h^6 p_b_n_n -p_2n_2b
52:-cba d2h^6 p_c_n_n -p_2ab_2c
52:bca d2h^6 p_n_c_n -p_2ab_2n
52:a-cb d2h^6 p_n_a_n -p_2n_2bc
53 d2h^7 p_m_n_a -p_2ac_2
53:ba-c d2h^7 p_n_m_b -p_2bc_2bc
53:cab d2h^7 p_b_m_n -p_2ab_2ab
53:-cba d2h^7 p_c_n_m -p_2_2ac
53:bca d2h^7 p_n_c_m -p_2_2bc
53:a-cb d2h^7 p_m_a_n -p_2ab_2
54 d2h^8 p_c_c_a -p_2a_2ac
54:ba-c d2h^8 p_c_c_b -p_2b_2c
54:cab d2h^8 p_b_a_a -p_2a_2b
54:-cba d2h^8 p_c_a_a -p_2ac_2c
54:bca d2h^8 p_b_c_b -p_2bc_2b
54:a-cb d2h^8 p_b_a_b -p_2b_2ab
55 d2h^9 p_b_a_m -p_2_2ab
55:cab d2h^9 p_m_c_b -p_2bc_2
55:bca d2h^9 p_c_m_a -p_2ac_2ac
56 d2h^10 p_c_c_n -p_2ab_2ac
56:cab d2h^10 p_n_a_a -p_2ac_2bc
56:bca d2h^10 p_b_n_b -p_2bc_2ab
57 d2h^11 p_b_c_m -p_2c_2b
57:ba-c d2h^11 p_c_a_m -p_2c_2ac
57:cab d2h^11 p_m_c_a -p_2ac_2a
57:-cba d2h^11 p_m_a_b -p_2b_2a
57:bca d2h^11 p_b_m_a -p_2a_2ab
57:a-cb d2h^11 p_c_m_b -p_2bc_2c
58 d2h^12 p_n_n_m -p_2_2n
58:cab d2h^12 p_m_n_n -p_2n_2
58:bca d2h^12 p_n_m_n -p_2n_2n
59:1 d2h^13 p_m_m_n:1 p_2_2ab_-1ab
59:2 d2h^13 p_m_m_n:2 -p_2ab_2a
59:1cab d2h^13 p_n_m_m:1 p_2bc_2_-1bc
59:2cab d2h^13 p_n_m_m:2 -p_2c_2bc
59:1bca d2h^13 p_m_n_m:1 p_2ac_2ac_-1ac
59:2bca d2h^13 p_m_n_m:2 -p_2c_2a
60 d2h^14 p_b_c_n -p_2n_2ab
60:ba-c d2h^14 p_c_a_n -p_2n_2c
60:cab d2h^14 p_n_c_a -p_2a_2n
60:-cba d2h^14 p_n_a_b -p_2bc_2n
60:bca d2h^14 p_b_n_a -p_2ac_2b
60:a-cb d2h^14 p_c_n_b -p_2b_2ac
61 d2h^15 p_b_c_a -p_2ac_2ab
61:ba-c d2h^15 p_c_a_b -p_2bc_2ac
62 d2h^16 p_n_m_a -p_2ac_2n
62:ba-c d2h^16 p_m_n_b -p_2bc_2a
62:cab d2h^16 p_b_n_m -p_2c_2ab
62:-cba d2h^16 p_c_m_n -p_2n_2ac
62:bca d2h^16 p_m_c_n -p_2n_2a
62:a-cb d2h^16 p_n_a_m -p_2c_2n
63 d2h^17 c_m_c_m -c_2c_2
63:ba-c d2h^17 c_c_m_m -c_2c_2c
63:cab d2h^17 a_m_m_a -a_2a_2a
63:-cba d2h^17 a_m_a_m -a_2_2a
63:bca d2h^17 b_b_m_m -b_2_2b
63:a-cb d2h^17 b_m_m_b -b_2b_2
64 d2h^18 c_m_c_a -c_2ac_2 # -c_2bc_2
64:ba-c d2h^18 c_c_m_b -c_2ac_2ac # -c_2bc_2bc
64:cab d2h^18 a_b_m_a -a_2ab_2ab # -a_2ac_2ac
64:-cba d2h^18 a_c_a_m -a_2_2ab # -a_2_2ac
64:bca d2h^18 b_b_c_m -b_2_2ab # -b_2_2bc
64:a-cb d2h^18 b_m_a_b -b_2ab_2 # -b_2bc_2
65 d2h^19 c_m_m_m -c_2_2
65:cab d2h^19 a_m_m_m -a_2_2
65:bca d2h^19 b_m_m_m -b_2_2
66 d2h^20 c_c_c_m -c_2_2c
66:cab d2h^20 a_m_a_a -a_2a_2
66:bca d2h^20 b_b_m_b -b_2b_2b
67 d2h^21 c_m_m_a -c_2a_2 # -c_2b_2
67:ba-c d2h^21 c_m_m_b -c_2a_2a # -c_2b_2b
67:cab d2h^21 a_b_m_m -a_2b_2b # -a_2c_2c
67:-cba d2h^21 a_c_m_m -a_2_2c
67:bca d2h^21 b_m_c_m -b_2_2a # -b_2_2c
67:a-cb d2h^21 b_m_a_m -b_2a_2 # -b_2c_2
68:1 d2h^22 c_c_c_a:1 c_2_2_-1ac # c_2_2_-1bc
68:2 d2h^22 c_c_c_a:2 -c_2a_2ac # -c_2b_2bc
68:1ba-c d2h^22 c_c_c_b:1 c_2_2_-1ac # c_2_2_-1bc
68:2ba-c d2h^22 c_c_c_b:2 -c_2a_2c # -c_2b_2c
68:1cab d2h^22 a_b_a_a:1 a_2_2_-1ab # a_2_2_-1ac
68:2cab d2h^22 a_b_a_a:2 -a_2a_2c
68:1-cba d2h^22 a_c_a_a:1 a_2_2_-1ab # a_2_2_-1ac
68:2-cba d2h^22 a_c_a_a:2 -a_2ab_2b # -a_2ac_2c
68:1bca d2h^22 b_b_c_b:1 b_2_2_-1ab # b_2_2_-1bc
68:2bca d2h^22 b_b_c_b:2 -b_2ab_2b # -b_2bc_2b
68:1a-cb d2h^22 b_b_a_b:1 b_2_2_-1ab # b_2_2_-1bc
68:2a-cb d2h^22 b_b_a_b:2 -b_2b_2ab # -b_2b_2bc
69 d2h^23 f_m_m_m -f_2_2
70:1 d2h^24 f_d_d_d:1 f_2_2_-1d
70:2 d2h^24 f_d_d_d:2 -f_2uv_2vw
71 d2h^25 i_m_m_m -i_2_2
72 d2h^26 i_b_a_m -i_2_2c
72:cab d2h^26 i_m_c_b -i_2a_2
72:bca d2h^26 i_c_m_a -i_2b_2b
73 d2h^27 i_b_c_a -i_2b_2c
73:ba-c d2h^27 i_c_a_b -i_2a_2b
74 d2h^28 i_m_m_a -i_2b_2
74:ba-c d2h^28 i_m_m_b -i_2a_2a
74:cab d2h^28 i_b_m_m -i_2c_2c
74:-cba d2h^28 i_c_m_m -i_2_2b
74:bca d2h^28 i_m_c_m -i_2_2a
74:a-cb d2h^28 i_m_a_m -i_2c_2
75 c4^1 p_4 p_4
76 c4^2 p_41 p_4w
76 c4^2 p_41 p_41
77 c4^3 p_42 p_4c
77 c4^3 p_42 p_42
78 c4^4 p_43 p_4cw
78 c4^4 p_43 p_43
79 c4^5 i_4 i_4
80 c4^6 i_41 i_4bw
81 s4^1 p_-4 p_-4
82 s4^2 i_-4 i_-4
83 c4h^1 p_4/m -p_4
84 c4h^2 p_42/m -p_4c
84 c4h^2 p_42/m -p_42
85:1 c4h^3 p_4/n:1 p_4ab_-1ab
85:2 c4h^3 p_4/n:2 -p_4a
86:1 c4h^4 p_42/n:1 p_4n_-1n
86:2 c4h^4 p_42/n:2 -p_4bc
87 c4h^5 i_4/m -i_4
88:1 c4h^6 i_41/a:1 i_4bw_-1bw
88:2 c4h^6 i_41/a:2 -i_4ad
89 d4^1 p_4_2_2 p_4_2
90 d4^2 p_4_21_2 p_4ab_2ab
91 d4^3 p_41_2_2 p_4w_2c
91 d4^3 p_41_2_2 p_41_2c
92 d4^4 p_41_21_2 p_4abw_2nw
93 d4^5 p_42_2_2 p_4c_2
93 d4^5 p_42_2_2 p_42_2
94 d4^6 p_42_21_2 p_4n_2n
95 d4^7 p_43_2_2 p_4cw_2c
95 d4^7 p_43_2_2 p_43_2c
96 d4^8 p_43_21_2 p_4nw_2abw
97 d4^9 i_4_2_2 i_4_2
98 d4^10 i_41_2_2 i_4bw_2bw
99 c4v^1 p_4_m_m p_4_-2
100 c4v^2 p_4_b_m p_4_-2ab
101 c4v^3 p_42_c_m p_4c_-2c
101 c4v^3 p_42_c_m p_42_-2c
102 c4v^4 p_42_n_m p_4n_-2n
103 c4v^5 p_4_c_c p_4_-2c
104 c4v^6 p_4_n_c p_4_-2n
105 c4v^7 p_42_m_c p_4c_-2
105 c4v^7 p_42_m_c p_42_-2
106 c4v^8 p_42_b_c p_4c_-2ab
106 c4v^8 p_42_b_c p_42_-2ab
107 c4v^9 i_4_m_m i_4_-2
108 c4v^10 i_4_c_m i_4_-2c
109 c4v^11 i_41_m_d i_4bw_-2
110 c4v^12 i_41_c_d i_4bw_-2c
111 d2d^1 p_-4_2_m p_-4_2
112 d2d^2 p_-4_2_c p_-4_2c
113 d2d^3 p_-4_21_m p_-4_2ab
114 d2d^4 p_-4_21_c p_-4_2n
115 d2d^5 p_-4_m_2 p_-4_-2
116 d2d^6 p_-4_c_2 p_-4_-2c
117 d2d^7 p_-4_b_2 p_-4_-2ab
118 d2d^8 p_-4_n_2 p_-4_-2n
119 d2d^9 i_-4_m_2 i_-4_-2
120 d2d^10 i_-4_c_2 i_-4_-2c
121 d2d^11 i_-4_2_m i_-4_2
122 d2d^12 i_-4_2_d i_-4_2bw
123 d4h^1 p_4/m_m_m -p_4_2
124 d4h^2 p_4/m_c_c -p_4_2c
125:1 d4h^3 p_4/n_b_m:1 p_4_2_-1ab
125:2 d4h^3 p_4/n_b_m:2 -p_4a_2b
126:1 d4h^4 p_4/n_n_c:1 p_4_2_-1n
126:2 d4h^4 p_4/n_n_c:2 -p_4a_2bc
127 d4h^5 p_4/m_b_m -p_4_2ab
128 d4h^6 p_4/m_n_c -p_4_2n
129:1 d4h^7 p_4/n_m_m:1 p_4ab_2ab_-1ab
129:2 d4h^7 p_4/n_m_m:2 -p_4a_2a
130:1 d4h^8 p_4/n_c_c:1 p_4ab_2n_-1ab
130:2 d4h^8 p_4/n_c_c:2 -p_4a_2ac
131 d4h^9 p_42/m_m_c -p_4c_2
132 d4h^10 p_42/m_c_m -p_4c_2c
133:1 d4h^11 p_42/n_b_c:1 p_4n_2c_-1n
133:2 d4h^11 p_42/n_b_c:2 -p_4ac_2b
134:1 d4h^12 p_42/n_n_m:1 p_4n_2_-1n
134:2 d4h^12 p_42/n_n_m:2 -p_4ac_2bc
135 d4h^13 p_42/m_b_c -p_4c_2ab
135 d4h^13 p_42/m_b_c -p_42_2ab
136 d4h^14 p_42/m_n_m -p_4n_2n
137:1 d4h^15 p_42/n_m_c:1 p_4n_2n_-1n
137:2 d4h^15 p_42/n_m_c:2 -p_4ac_2a
138:1 d4h^16 p_42/n_c_m:1 p_4n_2ab_-1n
138:2 d4h^16 p_42/n_c_m:2 -p_4ac_2ac
139 d4h^17 i_4/m_m_m -i_4_2
140 d4h^18 i_4/m_c_m -i_4_2c
141:1 d4h^19 i_41/a_m_d:1 i_4bw_2bw_-1bw
141:2 d4h^19 i_41/a_m_d:2 -i_4bd_2
142:1 d4h^20 i_41/a_c_d:1 i_4bw_2aw_-1bw
142:2 d4h^20 i_41/a_c_d:2 -i_4bd_2c
143 c3^1 p_3 p_3
144 c3^2 p_31 p_31
145 c3^3 p_32 p_32
146:h c3^4 r_3:h r_3
146:r c3^4 r_3:r p_3*
147 c3i^1 p_-3 -p_3
148:h c3i^2 r_-3:h -r_3
148:r c3i^2 r_-3:r -p_3*
149 d3^1 p_3_1_2 p_3_2
150 d3^2 p_3_2_1 p_3_2"
151 d3^3 p_31_1_2 p_31_2_(0_0_4) # p_31_2c_(0_0_1)
152 d3^4 p_31_2_1 p_31_2"
153 d3^5 p_32_1_2 p_32_2_(0_0_2) # p_32_2c_(0_0_-1)
154 d3^6 p_32_2_1 p_32_2"
155:h d3^7 r_3_2:h r_3_2"
155:r d3^7 r_3_2:r p_3*_2
156 c3v^1 p_3_m_1 p_3_-2"
157 c3v^2 p_3_1_m p_3_-2
158 c3v^3 p_3_c_1 p_3_-2"c
159 c3v^4 p_3_1_c p_3_-2c
160:h c3v^5 r_3_m:h r_3_-2"
160:r c3v^5 r_3_m:r p_3*_-2
161:h c3v^6 r_3_c:h r_3_-2"c
161:r c3v^6 r_3_c:r p_3*_-2n
162 d3d^1 p_-3_1_m -p_3_2
163 d3d^2 p_-3_1_c -p_3_2c
164 d3d^3 p_-3_m_1 -p_3_2"
165 d3d^4 p_-3_c_1 -p_3_2"c
166:h d3d^5 r_-3_m:h -r_3_2"
166:r d3d^5 r_-3_m:r -p_3*_2
167:h d3d^6 r_-3_c:h -r_3_2"c
167:r d3d^6 r_-3_c:r -p_3*_2n
168 c6^1 p_6 p_6
169 c6^2 p_61 p_61
170 c6^3 p_65 p_65
171 c6^4 p_62 p_62
172 c6^5 p_64 p_64
173 c6^6 p_63 p_6c
173 c6^6 p_63 p_63
174 c3h^1 p_-6 p_-6
175 c6h^1 p_6/m -p_6
176 c6h^2 p_63/m -p_6c
176 c6h^2 p_63/m -p_63
177 d6^1 p_6_2_2 p_6_2
178 d6^2 p_61_2_2 p_61_2_(0_0_5) # p_61_2_(0_0_-1)
179 d6^3 p_65_2_2 p_65_2_(0_0_1)
180 d6^4 p_62_2_2 p_62_2_(0_0_4) # p_62_2c_(0_0_1)
181 d6^5 p_64_2_2 p_64_2_(0_0_2) # p_64_2c_(0_0_-1)
182 d6^6 p_63_2_2 p_6c_2c
182 d6^6 p_63_2_2 p_63_2c
183 c6v^1 p_6_m_m p_6_-2
184 c6v^2 p_6_c_c p_6_-2c
185 c6v^3 p_63_c_m p_6c_-2
185 c6v^3 p_63_c_m p_63_-2
186 c6v^4 p_63_m_c p_6c_-2c
186 c6v^4 p_63_m_c p_63_-2c
187 d3h^1 p_-6_m_2 p_-6_2
188 d3h^2 p_-6_c_2 p_-6c_2
189 d3h^3 p_-6_2_m p_-6_-2
190 d3h^4 p_-6_2_c p_-6c_-2c
191 d6h^1 p_6/m_m_m -p_6_2
192 d6h^2 p_6/m_c_c -p_6_2c
193 d6h^3 p_63/m_c_m -p_6c_2
193 d6h^3 p_63/m_c_m -p_63_2
194 d6h^4 p_63/m_m_c -p_6c_2c
194 d6h^4 p_63/m_m_c -p_63_2c
195 t^1 p_2_3 p_2_2_3
196 t^2 f_2_3 f_2_2_3
197 t^3 i_2_3 i_2_2_3
198 t^4 p_21_3 p_2ac_2ab_3
199 t^5 i_21_3 i_2b_2c_3
200 th^1 p_m_-3 -p_2_2_3
201:1 th^2 p_n_-3:1 p_2_2_3_-1n
201:2 th^2 p_n_-3:2 -p_2ab_2bc_3
202 th^3 f_m_-3 -f_2_2_3
203:1 th^4 f_d_-3:1 f_2_2_3_-1d
203:2 th^4 f_d_-3:2 -f_2uv_2vw_3
204 th^5 i_m_-3 -i_2_2_3
205 th^6 p_a_-3 -p_2ac_2ab_3
206 th^7 i_a_-3 -i_2b_2c_3
207 o^1 p_4_3_2 p_4_2_3
208 o^2 p_42_3_2 p_4n_2_3
209 o^3 f_4_3_2 f_4_2_3
210 o^4 f_41_3_2 f_4d_2_3
211 o^5 i_4_3_2 i_4_2_3
212 o^6 p_43_3_2 p_4acd_2ab_3
213 o^7 p_41_3_2 p_4bd_2ab_3
214 o^8 i_41_3_2 i_4bd_2c_3
215 td^1 p_-4_3_m p_-4_2_3
216 td^2 f_-4_3_m f_-4_2_3
217 td^3 i_-4_3_m i_-4_2_3
218 td^4 p_-4_3_n p_-4n_2_3
219 td^5 f_-4_3_c f_-4a_2_3 # f_-4c_2_3
220 td^6 i_-4_3_d i_-4bd_2c_3
221 oh^1 p_m_-3_m -p_4_2_3
222:1 oh^2 p_n_-3_n:1 p_4_2_3_-1n
222:2 oh^2 p_n_-3_n:2 -p_4a_2bc_3
223 oh^3 p_m_-3_n -p_4n_2_3
224:1 oh^4 p_n_-3_m:1 p_4n_2_3_-1n
224:2 oh^4 p_n_-3_m:2 -p_4bc_2bc_3
225 oh^5 f_m_-3_m -f_4_2_3
226 oh^6 f_m_-3_c -f_4a_2_3 # -f_4c_2_3
227:1 oh^7 f_d_-3_m:1 f_4d_2_3_-1d
227:2 oh^7 f_d_-3_m:2 -f_4vw_2vw_3
228:1 oh^8 f_d_-3_c:1 f_4d_2_3_-1ad # f_4d_2_3_-1cd
228:2 oh^8 f_d_-3_c:2 -f_4ud_2vw_3 # -f_4cvw_2vw_3
229 oh^9 i_m_-3_m -i_4_2_3
230 oh^10 i_a_-3_d -i_4bd_2c_3